LangChain Provider Configuration
Overview
This guide explains how to configure LangChain to work with Pay-i for tracking token usage and costs. LangChain works with various Providers and Resources that Pay-i can track.
SDK Support
The examples in this guide use the Pay-i Python SDK with LangChain. The integration uses a custom callback handler that sends token usage data to Pay-i after LLM calls complete.
LangChain Integration Approach
Unlike other providers where Pay-i can operate in either Proxy or Ingest mode, LangChain integration works exclusively through an Ingest approach using a custom callback handler. This handler captures token usage after calls complete and sends the data to Pay-i's ingest API.
Creating a Custom Callback Handler
The key to LangChain integration is creating a PayiHandler
custom callback class:
import os
from payi import Payi
from langchain_core.callbacks import BaseCallbackHandler
class PayiHandler(BaseCallbackHandler):
def __init__(self, client, params):
self.name = "custom_handler"
self.client = client
self.params = {
**params
}
def on_llm_end(self, response, **kwargs):
llm_output = response.llm_output
if llm_output and 'token_usage' in llm_output:
token_usage = llm_output['token_usage']
prompt_tokens = token_usage.get('prompt_tokens', 0)
completion_tokens = token_usage.get('completion_tokens', 0)
if not (prompt_tokens > 0 or completion_tokens > 0):
print(f"{self.name}: no token usage in LLM output", response)
return
try:
# Send token usage data to Pay-i
result = self.client.ingest.units(
category=self.params['category'],
resource=self.params['resource'],
units={ "text": { "input": prompt_tokens, "output": completion_tokens} },
limit_ids=self.params['limit_ids'],
request_tags=self.params['request_tags']
)
print(f'ingest result: {result.model_dump_json(indent=4)}')
except Exception as e:
print(f"{self.name}: error sending usage info", e)
Setting Up and Using the Handler
Here's how to set up and use the PayiHandler
with LangChain:
from payi import Payi
from payi.lib.helpers import PayiCategories
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
# Read API keys from environment variables
openai_key = os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_KEY")
payi_api_key = os.getenv("PAYI_API_KEY", "YOUR_PAYI_API_KEY")
# Create Pay-i client
payi_client = Payi(
api_key=payi_api_key
)
# Create a limit to track usage against (optional)
limit_response = payi_client.limits.create(
limit_name='LangChain example limit',
max=12.50, # $12.50 USD
limit_type="Allow",
limit_tags=["langchain_example"]
)
limit_id = limit_response.limit.limit_id
# Configuration parameters for the Pay-i handler
params = {
'category': PayiCategories.openai, # Provider category
'resource': 'gpt-3.5-turbo', # Model identifier
'limit_ids': [limit_id], # Optional: limits to track against
'request_tags': ['langchain', 'example'] # Optional: tags for organization
}
# Create the Pay-i handler
handler = PayiHandler(client=payi_client, params=params)
# Create the LangChain model with the handler
model = ChatOpenAI(
model=params['resource'],
api_key=openai_key,
callbacks=[handler] # Register the Pay-i handler
)
# Create and run a simple chain
prompt = ChatPromptTemplate.from_messages(["Say this: {text}"])
chain = prompt | model
response = chain.invoke({"text": "Hello, world!"})
print(response.content)
Supported LangChain Providers
This approach works with any LangChain integration that properly reports token usage in the llm_output
. Examples include:
- OpenAI models
- Azure OpenAI models
- Anthropic Claude models
- AWS Bedrock models
To use a different provider, simply update the category
and resource
parameters to match the provider you're using:
# For Azure OpenAI
params = {
'category': PayiCategories.azure_openai,
'resource': 'your-deployment-name',
'limit_ids': [limit_id],
'request_tags': ['langchain', 'azure']
}
# For Anthropic
params = {
'category': PayiCategories.anthropic,
'resource': 'claude-3-haiku-20240307-v1:0',
'limit_ids': [limit_id],
'request_tags': ['langchain', 'anthropic']
}
Advanced Usage: Customizing the Handler
You can extend the PayiHandler
class to add more functionality. For example, you might want to:
- Track additional metadata
- Add more detailed logging
- Include user IDs for attribution
- Handle streaming responses
Here's an extended example with user ID tracking:
class ExtendedPayiHandler(BaseCallbackHandler):
def __init__(self, client, params, user_id=None):
self.name = "extended_handler"
self.client = client
self.params = {
**params
}
self.user_id = user_id
def on_llm_end(self, response, **kwargs):
llm_output = response.llm_output
if llm_output and 'token_usage' in llm_output:
token_usage = llm_output['token_usage']
prompt_tokens = token_usage.get('prompt_tokens', 0)
completion_tokens = token_usage.get('completion_tokens', 0)
try:
# Include user_id if provided
ingest_params = {
'category': self.params['category'],
'resource': self.params['resource'],
'units': { "text": { "input": prompt_tokens, "output": completion_tokens} },
'limit_ids': self.params.get('limit_ids', []),
'request_tags': self.params.get('request_tags', [])
}
if self.user_id:
ingest_params['user_id'] = self.user_id
result = self.client.ingest.units(**ingest_params)
print(f'ingest result: {result.model_dump_json(indent=4)}')
except Exception as e:
print(f"{self.name}: error sending usage info", e)
Related Resources
Updated about 8 hours ago